Minimal Characteristic Algebras for Rectangular k - Normal Identities

نویسندگان

  • K. Hambrook
  • S. L. Wismath
چکیده

A characteristic algebra for a hereditary property of identities of a fixed type τ is an algebra A such that for any variety V of type τ , we have A ∈ V if and only if every identity satisfied by V has the property p. This is equivalent to A being a generator for the variety determined by all identities of type τ which have property p. PÃlonka has produced minimal (smallest cardinality) characteristic algebras for a number of hereditary properties, including regularity, normality, uniformity, biregularity, rightand leftmost, outermost, and external-compatibility. In this paper, we use a construction of PÃlonka to study minimal characteristic algebras for the property of rectangular k-normality. In particular, we construct minimal characteristic algebras of type (2) for k-normality and rectangularity for 1 ≤ k ≤ 3. 2000 Mathematics Subject Classification: 08A05, 08B05

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generating Matrix Identities and Hard Instances for Strong Proof Systems

We study the complexity of generating identities of matrix rings. We establish an unconditional lower bound on the minimal number of generators needed to generate a matrix identity, where the generators are substitution instances of elements from any given finite basis of the matrix identities. Based on our findings, we propose to consider matrix identities (and their encoding) as hard instance...

متن کامل

Additive maps on C$^*$-algebras commuting with $|.|^k$ on normal elements

Let $mathcal {A} $ and $mathcal {B} $ be C$^*$-algebras. Assume that $mathcal {A}$ is of real rank zero and unital with unit $I$ and $k>0$ is a real number. It is shown that if $Phi:mathcal{A} tomathcal{B}$ is an additive map preserving $|cdot|^k$ for all normal elements; that is, $Phi(|A|^k)=|Phi(A)|^k $ for all normal elements $Ainmathcal A$, $Phi(I)$ is a projection, and there exists a posit...

متن کامل

On p-semilinear transformations

In this paper, we introduce $p$-semilinear transformations for linear algebras over a field ${bf F}$ of positive characteristic $p$, discuss initially the elementary properties of $p$-semilinear transformations, make use of it to give some characterizations of linear algebras over a field ${bf F}$ of positive characteristic $p$. Moreover, we find a one-to-one correspondence between $p$-semiline...

متن کامل

Rectangular Algebras as Tree Recognizers

We consider finite rectangular algebras of finite type as tree recognizers. The type is represented by a ranked alphabet Σ. We determine the varieties of finite rectangular Σ-algebras and show that they form a Boolean lattice in which the atoms are minimal varieties of finite Σ-algebras consisting of projection algebras. We also describe the corresponding varieties of Σ-tree languages and compa...

متن کامل

k-NORMALIZATION AND (k + 1)-LEVEL INFLATION OF VARIETIES

Let τ be a type of algebras. A common measurement of the complexity of terms of type τ is the depth of a term. For k ≥ 1, an identity s ≈ t of type τ is said to be k-normal (with respect to this depth complexity measurement) if either s = t or both s and t have depth ≥ k. A variety is called k-normal if all its identities are k-normal. Taking k = 1 with respect to the usual depth valuation of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011